

145.(AC) (A) Same size due to presence of 4f subshell (poor shielding)

(B) Incorrect \rightarrow As we go across the period size decreases

(C) Same size due to poor shielding effect by d orbital

(D) Incorrect \rightarrow size of Ne > size of Na [Ne \rightarrow noble gas]

146.(ABCD)

(A) $C(IE_1) > B(IE_1)$

Boron becomes stable due to fully filled 2s orbital after removing 1e⁻

∴ e^- can be easily removed $C(IE_2) < B(IE_2)$

In case of B, $2^{nd}e^{-}$ goes from fully filled 2s making it unstable thereby requiring more I.E.

(B) $P(IE_1) > S(IE_1)$

In case of p, $1^{st}\,e^-$ goes from half filled 3p orbital (stable) whereas in S, $1^{st}\,e^-$ goes from $3p^4$ making it half filled $(3p^3)\,S(IE_2)>P(IE_2)\to 2^{nd}\,e^-$ goes from half filled 3p in case of S thereby requiring more energy, making it unstable.

(C) $Be(IE_1) > B(IE_1)$

In case of Be, $1^{st}e^-$ goes from fully filled 2s whereas in B it goes from partially filled 2p. Be($I.E_2$) < B($I.E_2$). e^- goes from fully filled 2s orbital in case of B making it unstable thereby

requiring more energy than Be.

(D) $Mg(IE_1) > Na(IE_1)$

In case of Mg, $1^{st}e^-$ goes from fully filled 3s orbital whereas in Na, $1^{st}e^-$ goes from half filled s orbital. Na $\left(IE_2\right)>Mg\left(IE_2\right)$ e^- goes from fully filled 2p orbital in case of Na making it unstable thereby requiring more I.E than Mg.

147.(AC) (A) I.E = -E.G.E $\begin{bmatrix} energy \\ required \end{bmatrix}$ $\begin{bmatrix} energy \\ released \end{bmatrix}$ $\begin{bmatrix} energy \\ released \end{bmatrix}$

(B) Incorrect \rightarrow I.E. \neq E.A

(C) True by definition

(D) Incorrect \rightarrow Valid only in case of cation

148.(BCD)

(A)
$$\frac{p}{e} = \frac{\frac{Fe^{2+}}{26}}{\frac{26}{23}}, \frac{\frac{Fe^{3+}}{26}}{\frac{1}{23}}, \text{ due to high p/e ratio, (high Zeff.) in Fe3+, ionic radii of Fe2+ > Fe3+$$

- **(B)** In case of second I.E. for 'O' e^- removal in stable configuration ($ls^2.2s^23p^3$) so $N(IE_2) < O(IE_2)$.
- (C) Due to high shielding effect, atomic radius of Zn > Cu.
- (D) Due to high $Z_{eff.}$ I.E. of Tl > In (due to poor shielding effect of 4f subshell)

- **149.(AD) (A)** Sum of IE_1 and IE_2 is lower for element P
 - (B) Sum of first four IE is lower for element Q

150.(ABCD)

According to the values of I.E. given, it can be concluded that

- $\diamondsuit \qquad \mathrm{IE}_1 < \mathrm{IE}_2 < \mathrm{IE}_3 <\!\!<\!\!< \mathrm{IE}_4 < \mathrm{IE}_5$
- \diamond This shows that it achieved stable noble gas configuration after removing three e^- .
- ❖ It belongs to 13th group of periodic table
- It could be metal or non-metal or metalloid
- It forms stable trivalent cation